Access Keys:
Skip to content (Access Key - 0)

Support for parallelism in ensemble learning

Ensemble learning techniques take standard machine learning methods and improve their performance. This is achieved by learning a set of models and combining their predictions in some fashion. Ensemble learning methods whose constituent classifiers are independent from one another, in the sense that the input to each classifier doesn't depend on the output of any other classifier(s), lend themselves to parallel construction. Ensemble learning methods in Weka that can be made parallel in such a fashion include:

Support for parallel processing on multi cpu/core machines for these methods will be available in Weka 3.7.1.

This documentation is maintained by the Pentaho community, and members are encouraged to create new pages in the appropriate spaces, or edit existing pages that need to be corrected or updated.

Please do not leave comments on Wiki pages asking for help. They will be deleted. Use the forums instead.

Adaptavist Theme Builder Powered by Atlassian Confluence