## Package

**weka.classifiers.functions**

## Synopsis

Class for building and using a multinomial logistic regression model with a ridge estimator.

There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992):

If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.

The probability for class j with the exception of the last class is

Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1) The last class has probability 1-(sum[j=1..(k-1)]Pj(Xi)) = 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1) The (negative) multinomial log-likelihood is thus: L = -sum[i=1..n]{ sum[j=1..(k-1)](Yij * ln(Pj(Xi))) +(1 - (sum[j=1..(k-1)]Yij)) * ln(1 - sum[j=1..(k-1)]Pj(Xi)) } + ridge * (B^2)

In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables. Note that before we use the optimization procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For details of the optimization procedure, please check weka.core.Optimization class.

Although original Logistic Regression does not deal with instance weights, we modify the algorithm a little bit to handle the instance weights.

For more information see:

le Cessie, S., van Houwelingen, J.C. (1992). Ridge Estimators in Logistic Regression. Applied Statistics. 41(1):191-201.

Note: Missing values are replaced using a ReplaceMissingValuesFilter, and nominal attributes are transformed into numeric attributes using a NominalToBinaryFilter.

## Options

The table below describes the options available for Logistic.

Option |
Description |
---|---|

debug |
Output debug information to the console. |

maxIts |
Maximum number of iterations to perform. |

ridge |
Set the Ridge value in the log-likelihood. |

## Capabilities

The table below describes the capabilites of Logistic.

Capability |
Supported |
---|---|

Class |
Missing class values, Nominal class, Binary class |

Attributes |
Empty nominal attributes, Unary attributes, Nominal attributes, Binary attributes, Date attributes, Numeric attributes, Missing values |

Min # of instances |
1 |